rand('state',0);
n = 10;
m = 100;
atrue = rand(n,1);
btrue = rand;
u = rand(n,m);
mu = atrue'*u + btrue;
L = exp(-mu);
ns = ceil(max(10*mu));
y = sum(cumprod(rand(ns,m))>=L(ones(ns,1),:));
cvx_begin
variables a(n) b(1)
maximize sum(y.*log(a'*u+b) - (a'*u+b))
cvx_end
Calling Mosek 9.1.9: 276 variables, 103 equality constraints
For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------
MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 103
Cones : 92
Scalar variables : 276
Matrix variables : 0
Integer variables : 0
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name :
Objective sense : min
Type : CONIC (conic optimization problem)
Constraints : 103
Cones : 92
Scalar variables : 276
Matrix variables : 0
Integer variables : 0
Optimizer - threads : 8
Optimizer - solved problem : the primal
Optimizer - Constraints : 11
Optimizer - Cones : 92
Optimizer - Scalar variables : 276 conic : 276
Optimizer - Semi-definite variables: 0 scalarized : 0
Factor - setup time : 0.00 dense det. time : 0.00
Factor - ML order time : 0.00 GP order time : 0.00
Factor - nonzeros before factor : 66 after factor : 66
Factor - dense dim. : 0 flops : 2.48e+04
ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME
0 1.1e+02 1.3e+00 3.6e+02 0.00e+00 7.616113271e+01 -2.833959046e+02 1.0e+00 0.00
1 2.9e+01 3.3e-01 1.1e+02 -5.94e-01 1.550210526e+02 -4.189329868e+01 2.5e-01 0.01
2 3.5e+00 4.1e-02 7.0e+00 3.09e-01 1.198643925e+02 8.648608850e+01 3.1e-02 0.01
3 5.2e-01 6.0e-03 4.0e-01 9.14e-01 1.053451377e+02 1.002211740e+02 4.7e-03 0.01
4 6.2e-02 7.1e-04 1.6e-02 9.88e-01 1.029113145e+02 1.023014247e+02 5.5e-04 0.01
5 8.1e-03 9.2e-05 7.7e-04 9.99e-01 1.026144680e+02 1.025351494e+02 7.2e-05 0.01
6 1.0e-03 1.2e-05 3.5e-05 1.00e+00 1.025759070e+02 1.025658467e+02 9.1e-06 0.01
7 3.8e-04 4.4e-06 7.7e-06 1.00e+00 1.025722038e+02 1.025684382e+02 3.4e-06 0.01
8 1.9e-05 2.2e-07 8.5e-08 1.00e+00 1.025704546e+02 1.025702675e+02 1.7e-07 0.01
9 4.5e-06 5.2e-08 9.6e-09 1.00e+00 1.025703884e+02 1.025703441e+02 4.0e-08 0.01
10 3.1e-07 3.5e-09 1.7e-10 1.00e+00 1.025703707e+02 1.025703677e+02 2.7e-09 0.01
11 2.9e-07 3.4e-09 1.6e-10 1.00e+00 1.025703707e+02 1.025703678e+02 2.6e-09 0.02
12 2.9e-07 3.4e-09 1.6e-10 9.99e-01 1.025703707e+02 1.025703678e+02 2.6e-09 0.02
13 2.8e-07 3.2e-09 1.5e-10 1.00e+00 1.025703706e+02 1.025703679e+02 2.5e-09 0.02
14 2.8e-07 3.1e-09 1.4e-10 1.00e+00 1.025703706e+02 1.025703679e+02 2.4e-09 0.02
15 2.8e-07 3.1e-09 1.4e-10 1.00e+00 1.025703706e+02 1.025703679e+02 2.4e-09 0.02
16 7.1e-08 1.9e-09 6.8e-11 1.00e+00 1.025703701e+02 1.025703685e+02 1.5e-09 0.02
17 7.0e-08 1.9e-09 6.7e-11 1.00e+00 1.025703701e+02 1.025703685e+02 1.5e-09 0.02
18 7.0e-08 1.9e-09 6.7e-11 1.00e+00 1.025703701e+02 1.025703685e+02 1.5e-09 0.02
19 6.1e-08 1.9e-09 6.5e-11 1.00e+00 1.025703702e+02 1.025703685e+02 1.4e-09 0.02
20 6.1e-08 1.9e-09 6.4e-11 1.00e+00 1.025703702e+02 1.025703686e+02 1.4e-09 0.02
21 5.9e-08 1.8e-09 6.2e-11 1.00e+00 1.025703701e+02 1.025703685e+02 1.4e-09 0.02
22 5.9e-08 1.8e-09 6.2e-11 1.00e+00 1.025703701e+02 1.025703685e+02 1.4e-09 0.02
23 5.9e-08 1.8e-09 6.2e-11 1.00e+00 1.025703701e+02 1.025703685e+02 1.4e-09 0.02
24 2.1e-08 5.4e-10 9.9e-12 1.00e+00 1.025703696e+02 1.025703692e+02 4.1e-10 0.02
Optimizer terminated. Time: 0.03
Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 1.0257036964e+02 nrm: 1e+02 Viol. con: 3e-08 var: 0e+00 cones: 4e-08
Dual. obj: 1.0257036918e+02 nrm: 2e+00 Viol. con: 0e+00 var: 0e+00 cones: 0e+00
Optimizer summary
Optimizer - time: 0.03
Interior-point - iterations : 24 time: 0.02
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex - time: 0.00
Primal simplex - iterations : 0 time: 0.00
Dual simplex - iterations : 0 time: 0.00
Mixed integer - relaxations: 0 time: 0.00
------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +102.57