% "Antenna array pattern synthesis via convex optimization"
% by H. Lebret and S. Boyd
% (figures are generated)
%
% Designs a broadband antenna array with the far-field wave model such that:
% - it minimizes sidelobe level outside the beamwidth of the pattern
% - it has a unit sensitivity at some target direction and for some frequencies
%
% This is a convex problem (after sampling it can be formulated as an SOCP).
%
%   minimize   max |y(theta,f)|        for theta,f outside the desired region
%       s.t.   y(theta_tar,f_tar) = 1
%
% where y is the antenna array gain pattern (complex function) and
% variables are w (antenna array weights or shading coefficients).
% Gain pattern is a linear function of w: y(theta,f) = w'*a(theta,f)
% for some a(theta,f) describing antenna array configuration and specs.
%
% Written for CVX by Almir Mutapcic 02/02/06

% select array geometry
ARRAY_GEOMETRY = '2D_UNIFORM_LATTICE';
% ARRAY_GEOMETRY = '2D_RANDOM';

%********************************************************************
% problem specs
%********************************************************************
P = 2;                % number of filter taps at each antenna element
fs = 8000;            % sampling rate = 8000 Hz
T = 1/fs;             % sampling spacing
c = 2000;             % wave speed

theta_tar = 70;       % target direction
half_beamwidth = 10;  % half beamwidth around the target direction
f_low  = 1500;        % low frequency bound for the desired band
f_high = 2000;        % high frequency bound for the desired band

%********************************************************************
% random array of n antenna elements
%********************************************************************
if strcmp( ARRAY_GEOMETRY, '2D_RANDOM' )
  % set random seed to repeat experiments
  rand('state',0);

  % uniformly distributed on [0,L]-by-[0,L] square
  n = 20;
  L = 0.45*(c/f_high)*sqrt(n);
  % loc is a column vector of x and y coordinates
  loc = L*rand(n,2);

%********************************************************************
% uniform 2D array with m-by-m element with d spacing
%********************************************************************
elseif strcmp( ARRAY_GEOMETRY, '2D_UNIFORM_LATTICE' )
  m = 6; n = m^2;
  d = 0.45*(c/f_high);

  loc = zeros(n,2);
  for x = 0:m-1
    for y = 0:m-1
      loc(m*y+x+1,:) = [x y];
    end
  end
  loc = loc*d;

else
  error('Undefined array geometry')
end

%********************************************************************
% construct optimization data
%********************************************************************
% discretized grid sampling parameters
numtheta = 180;
numfreqs = 6;

theta = linspace(1,360,numtheta)';
freqs = linspace(500,3000,numfreqs)';

clear Atotal;
for k = 1:numfreqs
  % FIR portion of the main matrix
  Afir = kron( ones(numtheta,n), -[0:P-1]/fs );

  % cos/sine part of the main matrix
  Alocx = kron( loc(:,1)', ones(1,P) );
  Alocy = kron( loc(:,2)', ones(1,P) );
  Aloc = kron( cos(pi*theta/180)/c, Alocx ) + kron( sin(pi*theta/180)/c, Alocy );

  % create the main matrix for each frequency sample
  Atotal(:,:,k) = exp(2*pi*i*freqs(k)*(Afir+Aloc));
end

% single out indices so we can make equalities and inequalities
inbandInd    = find( freqs >= f_low & freqs <= f_high );
outbandInd   = find( freqs < f_low | freqs > f_high );
thetaStopInd = find( theta > (theta_tar+half_beamwidth) | ...
                     theta < (theta_tar-half_beamwidth) );
[diffClosest, thetaTarInd] = min( abs(theta - theta_tar) );

% create target and stopband constraint matrices
Atar = []; As = [];
% inband frequencies constraints
for k = [inbandInd]'
  Atar = [Atar; Atotal(thetaTarInd,:,k)];
  As = [As; Atotal(thetaStopInd,:,k)];
end
% outband frequencies constraints
for k = [outbandInd]'
  As = [As; Atotal(:,:,k)];
end

%********************************************************************
% optimization problem
%********************************************************************
cvx_begin
  variable w(n*P) complex
  minimize( max( abs( As*w ) ) )
  subject to
    % target direction equality constraint
    Atar*w == 1;
cvx_end

% check if problem was successfully solved
disp(['Problem is ' cvx_status])
if ~strfind(cvx_status,'Solved')
  return
end

fprintf(1,'The minimum sidelobe level is %3.2f dB.\n\n',...
          20*log10(cvx_optval) );

%********************************************************************
% plots
%********************************************************************
figure(1); clf;
plot(loc(:,1),loc(:,2),'o')
title('Antenna locations')
axis('square')

% plots of array patterns (cross sections for different frequencies)
figure(2); clf;
clr = { 'r' 'r' 'b' 'b' 'r' 'r' };
linetype = {'--' '--' '-' '-' '--' '--'};
for k = 1:numfreqs
  plot(theta, 20*log10(abs(Atotal(:,:,k)*w)), [clr{k} linetype{k}]);
  hold on;
end
axis([1 360 -15 0])
title('Passband (blue solid curves) and stopband (red dashed curves)')
xlabel('look angle'), ylabel('abs(y) in dB');
hold off;

% cross section polar plots
figure(3); clf;
bw = 2*half_beamwidth;
subplot(2,2,1); polar_plot_ant(abs( Atotal(:,:,2)*w ),theta_tar,bw,'f = 1000 (stop)');
subplot(2,2,2); polar_plot_ant(abs( Atotal(:,:,3)*w ),theta_tar,bw,'f = 1500 (pass)');
subplot(2,2,3); polar_plot_ant(abs( Atotal(:,:,4)*w ),theta_tar,bw,'f = 2000 (pass)');
subplot(2,2,4); polar_plot_ant(abs( Atotal(:,:,5)*w ),theta_tar,bw,'f = 2500 (stop)');
 
Calling Mosek 9.1.9: 4244 variables, 1205 equality constraints
   For improved efficiency, Mosek is solving the dual problem.
------------------------------------------------------------

MOSEK Version 9.1.9 (Build date: 2019-11-21 11:32:15)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: MACOSX/64-X86

MOSEK warning 710: #2 (nearly) zero elements are specified in sparse col '' (1571) of matrix 'A'.
MOSEK warning 710: #2 (nearly) zero elements are specified in sparse col '' (1572) of matrix 'A'.
MOSEK warning 710: #10 (nearly) zero elements are specified in sparse col '' (2081) of matrix 'A'.
MOSEK warning 710: #10 (nearly) zero elements are specified in sparse col '' (2082) of matrix 'A'.
MOSEK warning 710: #9 (nearly) zero elements are specified in sparse col '' (3701) of matrix 'A'.
MOSEK warning 710: #9 (nearly) zero elements are specified in sparse col '' (3702) of matrix 'A'.
MOSEK warning 710: #4 (nearly) zero elements are specified in sparse col '' (4241) of matrix 'A'.
MOSEK warning 710: #4 (nearly) zero elements are specified in sparse col '' (4242) of matrix 'A'.
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 1205            
  Cones                  : 1060            
  Scalar variables       : 4244            
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 0
Eliminator terminated.
Eliminator - tries                  : 1                 time                   : 0.00            
Lin. dep.  - tries                  : 1                 time                   : 0.03            
Lin. dep.  - number                 : 0               
Presolve terminated. Time: 0.05    
Problem
  Name                   :                 
  Objective sense        : min             
  Type                   : CONIC (conic optimization problem)
  Constraints            : 1205            
  Cones                  : 1060            
  Scalar variables       : 4244            
  Matrix variables       : 0               
  Integer variables      : 0               

Optimizer  - threads                : 8               
Optimizer  - solved problem         : the primal      
Optimizer  - Constraints            : 145
Optimizer  - Cones                  : 1061
Optimizer  - Scalar variables       : 3185              conic                  : 3185            
Optimizer  - Semi-definite variables: 0                 scalarized             : 0               
Factor     - setup time             : 0.02              dense det. time        : 0.00            
Factor     - ML order time          : 0.00              GP order time          : 0.00            
Factor     - nonzeros before factor : 1.06e+04          after factor           : 1.06e+04        
Factor     - dense dim.             : 0                 flops                  : 6.71e+07        
ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
0   1.1e+03  1.0e+00  1.0e+00  0.00e+00   0.000000000e+00   0.000000000e+00   1.0e+00  0.09  
1   1.1e+02  1.1e-01  1.4e-01  4.53e-01   -4.300381145e+00  -2.792693549e+00  1.1e-01  0.11  
2   6.1e+00  5.7e-03  4.6e-04  2.06e+00   -9.307710492e-01  -9.298148204e-01  5.7e-03  0.12  
3   1.9e+00  1.8e-03  1.1e-04  3.30e+00   -5.751664006e-01  -5.727301565e-01  1.8e-03  0.13  
4   4.8e-01  4.5e-04  9.2e-06  1.28e+00   -5.104730390e-01  -5.102823850e-01  4.5e-04  0.15  
5   7.7e-02  7.3e-05  3.2e-07  1.07e+00   -4.948668050e-01  -4.948832225e-01  7.3e-05  0.16  
6   4.3e-02  4.1e-05  1.3e-07  1.01e+00   -4.934043426e-01  -4.934138125e-01  4.1e-05  0.17  
7   7.4e-03  7.0e-06  8.8e-09  1.01e+00   -4.920453251e-01  -4.920471684e-01  7.0e-06  0.18  
8   1.4e-03  1.4e-06  7.7e-10  1.00e+00   -4.919167595e-01  -4.919171196e-01  1.4e-06  0.19  
9   2.7e-04  2.6e-07  6.3e-11  1.00e+00   -4.918830678e-01  -4.918831346e-01  2.6e-07  0.21  
10  4.7e-05  4.5e-08  4.6e-12  1.00e+00   -4.918799293e-01  -4.918799406e-01  4.5e-08  0.22  
11  7.0e-06  6.6e-09  2.7e-13  9.97e-01   -4.918793765e-01  -4.918793781e-01  6.6e-09  0.22  
12  9.9e-07  9.4e-10  1.4e-14  1.00e+00   -4.918793150e-01  -4.918793152e-01  9.5e-10  0.23  
13  1.4e-08  2.9e-11  2.6e-17  1.00e+00   -4.918793054e-01  -4.918793054e-01  1.4e-11  0.25  
Optimizer terminated. Time: 0.25    


Interior-point solution summary
  Problem status  : PRIMAL_AND_DUAL_FEASIBLE
  Solution status : OPTIMAL
  Primal.  obj: -4.9187930536e-01   nrm: 1e+00    Viol.  con: 7e-09    var: 0e+00    cones: 0e+00  
  Dual.    obj: -4.9187930536e-01   nrm: 2e+00    Viol.  con: 0e+00    var: 6e-12    cones: 0e+00  
Optimizer summary
  Optimizer                 -                        time: 0.25    
    Interior-point          - iterations : 13        time: 0.25    
      Basis identification  -                        time: 0.00    
        Primal              - iterations : 0         time: 0.00    
        Dual                - iterations : 0         time: 0.00    
        Clean primal        - iterations : 0         time: 0.00    
        Clean dual          - iterations : 0         time: 0.00    
    Simplex                 -                        time: 0.00    
      Primal simplex        - iterations : 0         time: 0.00    
      Dual simplex          - iterations : 0         time: 0.00    
    Mixed integer           - relaxations: 0         time: 0.00    

------------------------------------------------------------
Status: Solved
Optimal value (cvx_optval): +0.491879
 
Problem is Solved
The minimum sidelobe level is -6.16 dB.