USING SEDUMI 1.02, A MATLAB*TOOLBOX FOR
OPTIMIZATION OVER SYMMETRIC CONEST
(Updated for Version 1.05)

JOS F. STURM!
Department of Econometrics, Tilburg University,
Tilburg, The Netherlands.
http:/ /fewcal.kub.nl/~sturm, E-mail: j.f.sturm@kub.nl.

August 1998 — October 2001

Abstract

SeDuMi is an add-on for MATLAB, which lets you solve optimization problems with
linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data
and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently,
by exploiting sparsity. This paper describes how to work with this toolbox.

Keywords: Symmetric cone, semidefinite programming, second order cone programming,
self-duality, MATLAB, SeDuMi

SeDuMi stands for Self-Dual-Minimization: it implements the self-dual embedding technique
for optimization over self-dual homogeneous cones. The self-dual embedding technique as pro-
posed by Ye, Todd and Mizuno [31], essentially makes it possible to solve certain optimization
problems in a single phase, leading either to an optimal solution, or a certificate of infeasibility.
Optimization over self-dual homogeneous cones, or more concisely, optimization over symmetric
cones, was first studied by Nesterov and Todd [21], and is currently an active area of research.

Semidefinite programming is a special case of optimization over symmetric cones. The pop-
ular package SP by Vandenberghe and Boyd [29] is one of the first software tools that was
developed for semidefinite programming. Some control theorists use SP indirectly via LMI-
TOOL, by El Ghaoui, Nikoukhah and Delebecque [8], or MRCT, by Dussy and El Ghaoui [6],

*MATLAB is a registered trademark of The MathWorks, Inc.

fAppeared in: Optimization Methods and Software 11-12 (1999) 625-653

Research up to version 1.02 performed at Communications Research Laboratory, McMaster University, Hamil-
ton, Canada. Supported by Netherlands Organization for Scientific Research (NWO).

which are user-friendly front-ends for SP. More recently, the user-friendly front-end SeDuM:i
Interface[22] is available from

http://www.laas.fr/ peaucell/SeDuMiInt.html

A more recent and faster solver for semidefinite programming is SDPA, by Fujisawa, Kojima and
Nakata [11]. Other solvers for semidefinite programming are CSDP by Borchers [2], SDPHA by
Brixius and Potra [3] and SDPT3 by Toh, Todd and Tutiincii [28]. See Mittelmann [19] for a
comparison of the performance of various solvers (including SeDuMi) on semidefinite program-
ming problems of the SDPLIB test set.

For optimization over symmetric cones, there were until recently only two software tools
available, viz. SDPPack, by Alizadeh et al. [1], and SeDuMi. (SDPT3 has been extended to this
class of problems in 2001.) Both operate under the MATLAB environment, so that they can
easily be used within specific applications. SeDuMi has some features that are not available in
SDPPack, namely it

e allows the use of complex valued data,

e generates Farkas-dual solutions for infeasible problems,

e takes full advantage of sparsity, leading to significant speed benefits,
e has a theoretically proven O(y/nlog(1/¢)) worst-case iteration bound,

e promotes sparsity by handling dense columns separately (since version 1.03), using a tech-
nique proposed by Goldfarb and Scheinberg [13],

e can import linear programs in MPS format (either using a link to LIPSOL [32] or by using
the loadmps add-on by the author), and semidefinite programs in SDPA [11] format.

It is also possible to convert optimization problems from SDPPack [1] format into SeDuMi. Notice
that earlier versions of the semidefinite programming solver SDPT3 were also able to handle
complex valued data [28], but this option has been removed recently. The issue of expoiting
sparsity in semidefinite programming was studied by Fujisawa, Kojima and Nakata [10]. Unlike
the approach of [10], SeDuMi uses always the same sparsity expoiting procedure to form the
normal equations; this procedure is efficient regardless of the degree of sparsity. See Ross [24]
for a comparison between SDPpack and SeDuMi.

The remainder of this document is a step-by-step tutorial for SeDuMi. The on-line help pages
serve as a reference to the toolbox. In addition, the Appendix to this document has the details
of the calling sequence for the main function, sedumi.

1 introduction to sedumi

Throughout this document, we assume that SeDuMi is correctly installed, and that you are
working under MATLAB Version 5 or later. Entering the MATLAB command ‘help’ should
produce a list of all installed MATLAB Toolboxes, including the following lines:

>> help
HELP topics:

matlab/SeDuMil105 - SeDuMi 1.05 (0CT2001)
SeDuMil05/conversion - Conversion to SeDuMi.

For more help on directory/topic, type "help topic".

The command help conversion produces a list of functions for importing data into SeDuMi.
This includes an ‘umbrella’ script, getproblem!, which works as follows:

>> pname = ’truss2’; getproblem, who
Your variables are:

At MATNAME b pname
K PROBDIR ¢

This imports problem ‘truss2’, and places it in the variables At, b, ¢ and K. To do this, SeDuMi
must be able to find the requested problem somewhere on your disk. It can locate sparse SDPA
problems, if you have assigned a UNIX or DOS environment variable ‘SDPLIB’ to the directory
path where SDPA problems are stored. (SDPLIB and SeDuMi have a different canonical form; if
1y is a dual optimal solution calculated by SeDuMi, then —y is an optimal solution in the SDPLIB
canonical form.) If LIPSOL is installed, it uses LIPSOL’s function findprob to locate linear
programming problems in MPS format. Finally, if SDPPack is installed, and the environment
variable SDPPACK points to the SDPPack directory, then SDPPack problems are searched for in
the directory ‘SDPPACK /problems’.

Typing ‘help SeDuMil05’ produces a list of the functions that you can use to build and
solve optimization models over symmetric cones. They are: sedumi, eigK, vec, mat and eyeK.
Online help is provided by help sedumi, help eigK, and so on. The following sections give a
more detailed explanation of these functions, with some illustrating examples.

!This function has not been updated since Version 1.00, and may not be compatible with the latest software

2 linear programming

It is possible to formulate your linear programming model in either the primal standard form,

minimize clz

such that Az =D (1)
z; >0fori=1,2,...,n,

or the dual standard form,

maximize by)
such that ¢; —aly >0fori=1,2,...,n.

Mixed form and symmetric form linear programming models may be formulated using the ‘free
variable’ definition in SeDuMi, as outlined in Section 2.1.
Suppose that you want to solve the following linear programming problem:

minimize 1 — T2
such that 10z — 729 > 5 3)
1 + .1‘2/2 <3

z1 >0, 22 > 0.

In order to formulate this LP problem in the primal standard form, we have to add slack
variables, say z3 and z4. In MATLAB, we can then enter the b and ¢ vectors, and the A matrix
as follows:

>> ¢ = [1; -1; 0; 0];
>> A (1o, -7, -1, 0; 1, 1/2, 0, 11;
>> b = [5; 3];

We can now solve problem (3) in the primal form (1) by invoking the function sedumi.
Remark that MATLAB is case sensitive, and it is therefore essential to write sedumi in lower
case.

>> sedumi(A,b,c)
SeDuMi by Jos F. Sturm, 1998.
Alg = 2: xz-corrector, theta = 0.250, beta = 0.500
eqs m = 2, order n = 5, dim = 5, blocks =1
it cXx gap delta rate t/maxt feas
0 : 5.00E+00 0.000
1 : 7.81E-01 9.79E-01 0.000 0.1959 0.9000 0.77
2 : -5.52E-02 9.40E-02 0.000 0.0959 0.9900 0.93

* 3 : -1.25E-01 5.70E-04 0.000 0.0061 0.9990 1.08

iter seconds digits C*X bxy
3 0.1 15.1 -1.2500000000e-01 -1.2500000000e-01
[Ax-b| = 1.8e-15, [x|= 2.9e+00, |yl= 2.8e-01
ans =
1.9583
2.0833
0
0

This shows that the optimal value is —0.125, as listed under c*x. The function sedumi
returns an optimal solution, which in this case is £1 = 1.9583 and zo = 2.0833. Notice that
z is indeed feasible for (1), because all its components are nonnegative, and Az = b, as can
be checked by the commands min(x) and norm(Ax-b), respectively. Of course, some round-off
errors may occur, as can be seen from the following MATLAB output:

>> A=sparse(A) ;norm(A*x-b)
ans =
1.7764e-15

>> norm(Ax*(24x*x)-24%b)

The first quantity is listed as |Ax —b| = 1.8e — 15 in the output of SeDuMi. The second line
shows that the reported value of |Ax-b| does not only contain the residual, but also errors in
computing the residual. The meaning of the other parts in the output of SeDuMi is explained in
Section 5.

Using dual solutions, it is possible to check also optimality. Namely, if we let z := ¢ — ATy,
then if z and y are feasible to (1) and (2) respectively, we have

0<zlz=clz—yTAz =c'z —b'y.

Thus, if ¢'z — by = 0, then ¢'z must be minimal, and 5"y must be maximal, over all feasible
solutions. The dual solution y to (2) is assigned to the second output argument of sedumi, as in

>> [x,y] = sedumi(A,b,c)
In this example, we have y; = 0.125 and ys = 0.25. Issueing the command

>> z =c¢c - A’xy
zZ =

0
0
0.1250
0.2500

we see that zz; = 0 for all 4, proving optimality. However, due to some round-off errors,
ctz — by is positive in this case. The quantity digits = 15.1 in the output of SeDuMi, is

defined as follows:

— loglo((cT:v — bTy)/(\bTy| +10719) if ¢tz — 6Ty > 0
digits = (4)
oo otherwise.

As is well known, y is a subgradient of the optimal value function in terms of changes in b. If
the optimal value function is locally not differentiable in b, i.e. if there are multiple dual optimal
solutions, then it is said to be primal degenerate. SeDuMi usually generates a solution y in
the relative interior of the subgradient set, because it uses a Mehrotra-Ye [18] type termination
procedure for linear programs. For a detailed treatment of sensitivity analysis based on such
solutions, we refer to Monteiro and Mehrotra [20] and the book of Roos, Terlaky and Vial [23].

For large problems, it is usually not feasible to store A as a full matrix, due to memory
limitations. In this case, A should be stored in sparse format; type help sparfun for details.
Internally, SeDuMi always converts A to sparse format. The b and ¢ vectors can also be in sparse
format, if desired.

In the preceding, we defined b and ¢ in MATLAB as column vectors, but this is not essential;
SeDuMi produces the same output if b and/or ¢ are defined as row vectors. Similarly, SeDuMi is
not picky about the orientation of A: it will detect the correct orientation based on the b and ¢
vectors (except in the unrealistic case that A is square). In fact, it is good practice to store A
in such a way that it has more rows than columns, which is the transpose orientation of the A
matrices that we have seen so far. Namely, if A is stored in sparse format, then it is stored as a
set of sparse column vectors. Hence, if there are fewer columns, it will occupy less space.

There is a third output argument of SeDuMi, called info. In our example,

>> [x,y,info]l=sedumi(A,b,c); info

info =

cpusec: 0.1100
iter:
feasratio:
numerr:
pinf:
dinf:

O OO~ WwWwOo

This is a compound output argument, or structure, with a field cpusec for the solution time,
iter for the number of iterations, a field numerr which is nonzero in case of numerical problems
(1 means premature termination: results are inaccurate, 2 means failure), a field feasratio
for the final value of the feasibility indicator, and two fields, pinf and dinf, for the detected
feasibility status of the optimization problem. If pinf = 1, then the primal problem (1) is
infeasible, and y is a Farkas dual solution.

For instance, if we change the b vector in the preceding example to b = [5, 04], then

SeDuMi yields info.pinf = 1, by = 0.0955 > 0, max;—1234a;y = —0.1866 < 0. Notice that
for any x with Az = b, we have yT Az = bTy = 0.0955 > 0, whereas yT Az < 0 for nonnegative
z, because all components of ATy are nonpositive. A Farkas dual solution thus provides a
certificate of infeasibility. In this example, there appears to be a Farkas dual solution for which
all entries of ATy are strictly negative. In general though, they are merely nonpositive. For
numerical reasons, Ay can then contain some small positive components, and in this case we
have an approximate Farkas dual solution. Loosely speaking, such solutions demonstrate that
there cannot be any reasonably sized primal feasible solution; see Todd and Ye [27] for details.

Suppose now that we want to solve a problem in the dual standard form (2). In this case,
y with bTy > 0 and ATy < 0 has the interpretation of an improving direction. Namely, if
there exists a feasible solution ¢, i.e. if ¢ — ATy > 0, then ¢ + ty is feasible for all ¢+ > 0, and
lim;_, 0 bTy = 0o. In this case, we say that the problem is unbounded. The other possibility is
that there does not exist any feasible solution 7, i.e. the problem is infeasible. To distinguish
between an infeasible and an unbounded problem, we have to go through a second stage, by
solving a feasibility problem:

>> [x,y,info] = sedumi(A,zeros(length(b),1),c)
which may be entered in simplified form (since version 1.05) as
>> [x,y,info] = sedumi(A,0,c)

In our previous example, the dual problem is feasible, and the above command yields a feasible
solution . The need for this second stage feasibility problem is typical for interior point methods
with the self-dual embedding technique of Ye, Todd and Mizuno [31].

The interpretation of info.dinf is analogous to that of info.pinf. Namely, if info.dinf =1
then the dual problem (2) is infeasible, and this claim is certified by a Farkas solution = with

cle <0, Az =0,z; >0fori=1,2,...,n.

To distinguish between primal unboundedness and primal infeasibility, we would then solve the
feasibility problem

>> [x,y,info] = sedumi(A,b,zeros(length(c),1))

SeDuMi can also generate Gordan-Stiemke dual solutions. For instance, if we restore the
vector b to bT = [5 3], and solve the feasibility problem x = sedumi(A,b,zeros(4,1)), we
obtain a strictly positive vector z. This is because interior point methods try to find a solution
in the relative interior of the solution set. To see what happens if feasible solutions can merely
be nonnegative, consider the following example:

> b =[5, 1/2];
>> [x,y,info]l=sedumi(A,b,zeros(4,1));

>> [x -A’*y]
ans =
0.5000 0
0 1.1875
0 0.0990
0 0.9895
>> bxy
ans =
1.3878e-17

In this example, the primal does not have an interior solution, i.e. it is weakly feasible, and this
is demonstrated by a Gordan-Stiemke dual solution y. Namely, 0 # ATy < 0, and b'y = 0,
which clearly implies that there cannot be any z > 0 such that A xxz = b.

SeDuMi treats the primal and dual in a symmetric way, i.e. it does not favor one over the
other. From a modeling point of view however, the primal standard form and the dual standard
form are quite different, and it depends on the application which one is more favorable. The
primal form has the advantage of explicit equality constraints. In principle, equality constraints
can be constructed in the dual form also, simply by means of two inequality constraints, such as

aly < ¢; and ajy > c;. However, this technique is not recommended, since such constraint pairs
tend to get a pair of very large primal multipliers x;, hence leading to numerical difficulties. It
may be better to enforce an equality constraint by eliminating a y variable. However, the latter
technique may destroy the sparsity structure of the A-matrix, thus leading to longer solution
times.

Exactly the same problems arise in modeling a free (i.e. unresistricted in sign) variable in
the primal standard form. Splitting such a variable into two, its positive part and its negative
part, often results in numerical difficulties. One may also try to eliminate such a variable by
removing an equality constraint, but this usually causes an increase in the number of nonzeros in
the A-matrix. An alternative is to model all free variables in a quadratic cone. Quadratic cones
are discussed in Section 3. To prevent numerical difficulties with this technique, it is desirable
to fix a — possibly large — upper bound on the norm of the vector of free variables, which is
easily done in a quadratic cone.

Since Version 1.05, the user does not need to worry about these issues, since free variables
are allowed. This is the topic of the section below.

2.1 Free variables

It is possible to formulate your linear programming model in a primal form with free variables

as follows:
T

minimize cx
such that Az =0b (5)
r; € Rfori=1,2,...,K.f,
zj >0 for j =Kf+1,KEf+2,...,n,

where K.f is the number of free variables. The associated slack variables in the dual problem
are then restricted to be zero, thus allowing equality constraints in the dual:

maximize by
such that ci—ajy=0fori=1,2... Kf (6)
cj—ajy>0forj=Kf+1,Kf+2,...,n

3 quadratic and semidefinite constraints

In SeDuMi, it is possible to impose quadratic or semidefinite constraints, by restricting variables
to a quadratic cone or the cone of positive semidefinite matrices, respectively. Such a restriction
then replaces the nonnegativity restriction in linear programming. Thus, instead of requiring
z € N as in (1), we will now require + € K, where K is a so-called symmetric cone. A
symmetric cone is a Cartesian product of a nonnegative orthant, quadratic cones and cones of

positive semidefinite matrices. The standard primal form for such optimization problems is

minimize clz
such that Az =10 (7)
rek
and the dual standard form is
maximize bTy
T (8)
such that c¢— A"y e K.

3.1 The quadratic cone

A quadratic cone is by definition a cone of the form
Qcone := {(z1,z2) € R x RV | 21 > ||z2|}, (9)

where || - || denotes the Euclidean norm (the function norm in MATLAB). The quadratic cone
is also known as the second order cone or Lorentz cone. As an example, consider the following
optimization problem:

min{ys + 2 |yn > lla — Puall, 2 > v/1+ s}, (10)
where P is a given matrix, and g a given vector. The above is a robust least squares problem,
see El Ghaoui and Lebret [7]. The decision variables are the scalars y; and y2, and the vector
ys. This problem has two quadratic constraints, viz.

(y1,q9 — Py3) € Qcone, (yg, l y13]) € Qcone. (11)

Given P and ¢, the following MATLAB function (rls.m) constructs problem (10) in the
standard dual form (8). The A matrix will be in transposed orientation, and is hence denoted
as At.

% [At,b,c,K] = r1s(P,q)
% Creates dual standard form for robust least squares problem "Pu=q".
function [At,b,c,K] = rls(P,q)

[m, n] = size(P);

h ————————= minimize y_1 + y_2 ----——----

b = -sparse([1; 1; zeros(n,1)]);

h ————————= (y_.1, 9 - P y_3) in Qcone ----------

0 ~NO O WwWN -

10

9 At = sparse([-1, zeros(1,1+n);
10 zeros(m,2), P]);
11 ¢ = [0;q];

12 K.q = [1+m];

13 h === (y_2, (1,y_3)) in Qcone ------—----
14 At = [At; 0, -1, zeros(1,n);

15 zeros(1,2+n) ;

16 zeros(n,2), -eye(n)];

17 ¢ = sparse([c; 0;1;zeros(n,1)]);
18 K.q = [K.q, 2+n];

Notice first that the above function uses sparse data types, in order to save memory. Fur-
thermore, a structure X is defined, with a field K.q that lists the dimensions of the quadratic
cones. (The ‘q’ in K.q stands for ‘quadratic’.) The K-structure will be used to tell SeDuMi
that the components of ¢ — A'y are not restricted to be nonnegative as they would be in linear
programming. Instead, the first K.q(1) entries are restricted to a quadratic cone, and the last
K.q(2) entries are restricted to another quadratic cone. This is the way in which we model the
symmetric cone K in (7) and (8), and hence construct the two quadratic constraints in (11).

As a numerical example, we solve a 4 X 3 robust least squares problem with dependent
columns in P. The example is from [7].

> P =[314;011;-253;145]; q=1[0;2;1;3];
>> [At,b,c,K] = rls(P,q);

>> [x,y,info] = sedumi(At,b,c,K);

SeDuMi by Jos F. Sturm, 1998.

Alg = 1: v-corrector, theta
eqgs m = 5, order n = 5, dim

0.250, beta = 0.500
11, blocks = 3

it : cx gap delta rate t/maxt feas

0 : 5.00E+00 0.000

1 : -1.23E+01 1.30E+00 0.000 0.2605 0.9000 -0.18

2 : -5.94E+00 3.34E-01 0.000 0.2568 0.9000 0.54

3 : -3.60E+00 6.14E-02 0.116 0.1838 0.9000 0.86

4 : -3.34E+00 1.80E-03 0.000 0.0293 0.9900 1.10
* 5 : -3.33E+00 4.00E-06 0.000 0.0022 0.9990 1.00
* 6 : -3.33E+00 9.59E-09 0.000 0.0024 0.9990 1.00
* 7 : -3.33E+00 6.06E-10 0.153 0.0632 0.9900 1.00
* 8§ : -3.33E+00 1.24E-10 0.000 0.2037 0.9000 1.00
iter seconds digits C*X bxy

8 0.1 11.3 -3.3329085968e+00 -3.3329085968e+00
[Ax-b| = 2.8e-16, |x|= 2.0e+00, |yl= 2.5e+00

11

In the above call to SeDuMi, we see a new input argument, viz. K. This argument makes
SeDuMi solve an optimization problem in the form (7)—(8), where the symmetric cone K is
described by the structure K. Without the fourth input argument (K), SeDuMi would solve a
linear programming problem of the form (1)—(2).

To check that (11) is indeed satisfied by the solution y, it is in principle possible to verify
the inequality in definition (9) directly. However, it is more convenient to use the function
eigK, which is part of SeDuMi. This function returns the eigenvalues (or spectral values) of a
vector with respect to a symmetric cone. A symmetric cone consists of those vectors which
have nonnegative eigenvalues, see e.g. the book by Faraut and Kordnyi [9]. For a quadratic
cone (9), there are merely two eigenvalues, viz. given a vector (z1,72) € R® x RV~ we have
Ai(@1,29) = (21— ||z2]])/v/2 and Xo(z1,72) = (21 + ||22])/ V2.

We can thus check feasibility and optimality as follows:

>> [eigK(x,K), eigK(c-At*y,K)]
ans =

0.0000 -0.0000
1.4142 3.2307
0.0000 -0.0000
1.4142 1.4827

>> x’*(c—At*y)
ans =

1.5807e-11

For symmetric cones K, it holds that Tz > 0 for all z € K and z € K. Therefore, z provides
an optimality certificate for y just as in the case of linear programming. The interpretation
of Farkas dual solutions extends in the same way. See the survey paper of Luo, Sturm and
Zhang [16] for the details. However, a paradoxal phenomenon can occur, viz. that x and y are
almost feasible, whereas cTx —b'y is considerably negative (||z|| and/or ||y|| must then obviously
be very large). SeDuMi will then report an infinite number of digits in accuracy, according to
formula (4). This phenomenon was explained by Luo, Sturm and Zhang [15] and Sturm [25].

It is possible that an optimization model has both nonnegativity and quadratic cone con-
straints. For instance, we may extend the above example with the restriction that y3[1] < —0.1,
where y3[1] denotes the first component in the vector y3. This restriction can be added to the
model as follows:

>> al = zeros(1,length(y)); al(3) = 1;

12

>> ¢ = [-0.1; c]; At = [al;At];
>> K.1 = 1;

>> [x,y,info] = sedumi(At,b,c,K);
>> eigK(c-Atx*y,K)’

ans =

0.0000 -0.0000 3.2307 -0.0000 1.4904

The field K.1 is the number of nonnegative variables, which in this case is one. (The ‘" inK.1
stands for ‘linear’.) By convention, the nonnegative variables are always the first components,
so that K = R, x Qcone x Qcone in our case. As can be seen from the output of eigK, there
are 5 eigenvalues for this cone: 1 for each nonnegativity constraint, and 2 for each quadratic
constraint. We say that X is a symmetric cone of order 5. (SeDuMi reports ‘order n = 6’, because
of its internal self-dual reformulation.)

SeDuMi supports an alternative form of the quadratic cone, viz.

1
Rcone := {(wl,xQ,wg) ERXRNx RV 2 |g12 > §||w3||2, 1+ x9 > O} . (12)

Geometrically, Rcone is simply a rotation of Qcone. The specific form of Rcone is convenient for
modeling convex quadratic functions. Namely, by adding the linear equality constraint ‘z; = 1’
to the model, we obtain the restriction

1
T2 > §H$3H?

Throughout the model, we can then use z2 as a tight upper bound on ||z3]|?/2. Fractions are
also conveniently modeled by Rcone constraints. For instance, we may minimize 1/z; for 1 > 0
by solving the model

min{xg ‘ T2 > 1, 21 + 220 > O}.

Notice that this problem does not have a solution: the infimum of 1/z; is zero, for z; — oo.

>> clear K;

>>c¢ = [0, 1, 0]; b = sqrt(2); A = [0, 0, 1]; K.r = 3;
>> [x,y,info] = sedumi(A,b,c,K);

>> x(2), x(1)*x(2)

1.5360e-05

13

1.0147

You may find that zo is not yet close enough to zero, and that z; is not equal to oo either.
However, the primal solution is feasible, the dual solution is almost feasible, and the duality
gap is even negative. This illustrates an error bound difficulty, which is usual for this type of
irregular problems. In Section 5, we will see how to obtain a more accurate solution, by setting
an optional parameter, pars.eps.

As illustrated by the above example, the field K.r serves to list the dimensions of Rcone
constraints, analogously to the definition of Qcone constraints by K.q. (The ‘r’ in K.r stands
for ‘rotated quadratic cone’.) Setting both K.1, K.q and K.r fields yields a symmetric cone of
the form

K = R%* x (Qeone x - -+ x Qcone) x (Reone X --- X Reone).

For instance, we can add a bound ‘z; < 107’ to the model as follows:

, 0, 1, 0]; b = [sqrt(2); 1E7]; A = [0, O, O, 1;1, 1, 0, O];

1; K.r = 3;
o] = sedumi(A,b,c,K);

>> c¢c = [0
>> K.1 =
>> [x,y,inf

Some applications of Qcone and Rcone constraints are discussed in Lobo et al. [14].

3.2 The positive semidefinite cone

Semidefiniteness constraints are an important class of restrictions that can be modeled with
SeDuMi. As an example, consider the following problem:

min {Z(m - Z):L‘“

=1

m—k

Z:E,',H_k:bkfOI‘k:O,...,m—l,XiSde}. (13)
i=1

Here, X is an m x m symmetric matrix, and z;; denotes the entry on row ¢ and column j. The
length m vector b is given. The abbreviation ‘psd’ stands for ‘positive semidefinite’. The above
optimization problem yields a minimal phase spectral factorization of an autocorrelation vector
b, see Davidson, Luo and Sturm [4]. Problem (13) is stated in terms of an m X m symmetric
matrix of decision variables, whereas SeDuMi works with a vector of decision variables, as in (7)—
(8). This small issue is resolved by using the well known technique of vectorization. Vectorization
is implemented by the functions vec and mat, which are part of SeDuMi. The function vec (X)
creates a long vector, by stacking the columns of the matrix X, as in:

14

>> x = vec([1, 5, -3; 5, 2, -9; -3, -9, 4]1)°

1 5 -3 5 2 -9 -3 -9 4

The inverse of vec is mat. Thus, if z is a vector of length n?, then mat(z) constructs an n x n
matrix, and fills it with the entries of the vector z, starting at the first column.

>> mat (x)
ans =
1 5 -3
2 -9
-3 -9 4

The following MATLAB function produces a standard primal form for problem (13).

% [At,b,c,K] = specfac(b)
% Creates primal standard form for minimal phase spectral factorization.
function [At,b,c,K] = specfac(b)

m = length(b);

h —————————- minimize sum (m-i)#*X(i,i) ----------

¢ = vec(spdiags((m-1:-1:0)’,0,m,m));

h ————- Let e be all-1, and allocate space for the A-matrix -----

© 0 ~NO O W N~

e = ones(m,1);
sparse([],[1,[],m"2,m,m*(m+1)/2);

h ————————= sum(diag(X,k)) = b(k) --—————-—-
12 for k =
13 At(: L,k
14 end

15 K.s = [m];

=
= O
B
ct
]
~ =
n B

vec(spdiags(e,k-1,m,m));

The field K.s = [m)] tells SeDuMi that we want the m x m matrix mat (x) to be symmetric
positive semidefinite. (The ‘s’ in K. s stands for ‘semidefinite’.) We can now solve problem (13)
as follows:

>> b = [2; 0.2; -0.3];
>> [At,b,c,K] specfac(b);
>> [x,y,info] sedumi (At ,b,c,K);

15

SeDuMi by Jos F. Sturm, 1998.
Alg = 1: v-corrector, theta
eqs m = 3, order n = 4, dim

0.250, beta = 0.500
10, blocks = 2

it : cx gap delta rate t/maxt feas

0 : 4.00E+00 0.000

1 : 8.14E+00 1.40E+00 0.000 0.3497 0.9000 0.32

2 : 2.29E+00 4.68E-01 0.000 0.3346 0.9000 0.59

3 : 3.42E-01 1.12E-01 0.337 0.2391 0.9000 0.84

4 : 1.26E-01 1.92E-03 0.000 0.0172 0.9900 1.24
* 5 : 1.23E-01 3.97E-06 0.000 0.0021 0.9990 1.00
* 6 : 1.23E-01 8.88E-10 0.000 0.0002 0.9999 1.00
* 7 : 1.23E-01 2.27E-12 0.000 0.0026 0.9990 1.00
iter seconds digits C*X bxy

7 0.1 10.7 1.2273256502e-01 1.2273256502e-01
|[Ax-b| = 0.0e+00, |x|= 2.0e+00, |y|l= 7.6e-01

To check positive semidefiniteness, we can either use the function eig that is part of MATLAB,
or the function eigK, which comes with SeDuMi.

>> [eig(mat(x)), eigK(x,K)]
ans =

0.0000 0.0000
0.0000 0.0000
2.0000 2.0000

The use of eigK is more convenient, especially if there are multiple semidefiniteness con-
straints, or if there are also nonnegativity or quadratic cone constraints. SeDuMi will always
produce symmetric matrix variables, i.e. mat(x) is symmetric. Do not add symmetry con-
straints explicitly, as in ‘z;; — zj; = 0’. At best, such constraints will be removed by SeDuMi
from the A matrix.

However, the dual solution ¢ — ATy need not be symmetric, as can be seen in the numerical
example that we are dealing with:

>> mat (c—-At*y)
ans =
2.0727 -0.3130 0.6849

0 1.0727 -0.3130
0 0 0.0727

16

In this case, the dual solution is upper triangular, because mat (c) is diagonal, and mat (At (: ,k))
is upper triangular for all K = 1,2,...,m. Letting Z = mat(c — ATy), SeDuMi restricts the
symmetric part of Z, which is (Z + ZT)/2, to be positive semidefinite. The function eigK yields
the eigenvalues of the symmetric part. Thus,

>> eigK(c-At*y,K)
ans =

1.0583
2.1597
-0.0000

produces the same result as
>> Z = mat(c-At*y); eig(Z+Z’)/2

Notice that problem (13) is equivalent to

m m—k _) .
min{Z(m—z’)wii ZW:bkforkzO,...,m—l,Xispsd}. (14)
i=1 i=1

Namely, ; i1 = (T4i+k+Titk,i) /2, because X is symmetric. Thus, we may change the A matrix
as follows:

>> for k=1:size(At,2), Ak = mat(At(:,k)); At(:,k) = vec(Ak+Ak’)/2; end

The solutions =z and y, as produced by SeDuMi, will be exactly the same. However, since
the constraints in the A matrix have been symmetrized, we find that mat(c — At *y) is now
symmetric; it is the matrix (Z + Z')/2.

For SeDulMi, it does not make any difference whether the constraints in A and the objective ¢
are symmetrized or not. However, when modeling in the primal standard form, you will probably
find it more natural to work with upper or lower triangular matrices in A and ¢; your model will
also use less memory like this. On the other hand, symmetric matrices are more natural when
modeling in the dual form.

There can be multiple positive semidefiniteness constraints, in which case K. s lists the orders
of the respective matrices. This is analogous to the definition of multiple quadratic constraints
in K.q and/or K.r. The positive semidefinite variables are always the last components of z and
c— ATy, ie.

K = R x (Qeone x -+ - x Qeone) x (Reone x - -+ x Reone) x (Scone x - -+ x Scone),

where Scone denotes the cone of positive semidefinite matrices. It is easy to remember the above

arrangement, by noting the alphabetical order of ‘I’, ‘q’, ‘r’ and ‘s’.

17

4 complex values

In some application areas, such as signal processing, optimization problems may involve complex
valued data. An example is the Toeplitz Hermitian covariance estimation problem, which is
discussed in Wu, Luo and Wong [30]. Other structured covariance estimation problems, such as
discussed in Deng and Hu [5], can be treated similarly. Given a Hermitian matrix P, the goal
is to find a Hermitian positive definite matrix Z with a Toeplitz structure, such that ||P — Z||r
is minimal. Thus, the optimization problem is:

minimize Y %, ((zu — pii)Q +2 E;‘n:i-i—l |Z¢j — pij|2)
such that Z is Toeplitz, i.e. z;; = ziy1,41 forall,5=1,2,...,m—1 (15)
Z is psd.

If the matrix P has complex entries, then we will usually also see complex entries in the optimal
solution Z. Notice that the Toeplitz property is better modeled in the dual form, than in the
primal form. In fact, mat (At*y) in (13) is an upper triangular real Toeplitz matrix, and in (14),
it is a symmetric Toeplitz matrix. The MATLAB formulation of (15) therefore resembles the
MATLAB formulation of (13).

% [At,b,c,K] = toepest(P)
% Creates dual standard form for Toeplitz-covariance estimation
function [At,b,c,K] = toepest(P)

size(P,1);
h - maximize y(m+1l) —-———-—-—--
b = [sparse(m,1); 11;
h ———- Let e be all-1, and allocate space for the A-matrix -----

© 0 ~NOOsWN -
8
[

e = ones(m,1);

10 K.q = [1 + m*x(m+1)/2];

11 K.xcomplex = 2:K.q(1); %Norm-bound entries are complex valued
12 At = sparse([]1,[],[],K.q(1) + m"2,m+1,1 + 2¥m~2);

13) == constraints -------—---

14 % -y(m+1) >= norm(vec(P) - sum(y_i * Ti)) (Qcone)
156 % sum(y_i * Ti) is psd (Scone)
16 % —mmmmmmmmmmmmm oo

17 At(:,1) = [sparse(2:(m+1),1,1,K.q(1),1); -vec(speye(m))];
18 ¢ = [0; diag(P)];

19 firstk = m+2;

20 for k = 1:(m-1)

21 lastk = firstk + m-k-1;

22 Ti = spdiags(e,k,m,m);

18

23 At (:,k+1) = [sqrt(2) * sparse(firstk:lastk,1,1,K.q(1),1); -2*vec(Ti)];

24 c = [c; sqrt(2) * diag(P,k)];

25 firstk = lastk + 1;

26 end

27 At(:,m+1) = [1; sparse(K.q(1) + m"2-1,1)]; % "objective" variable y(m+1)
28 ¢ = [c; zeros(m~2,1)]; % all-0 in the psd-part

29 K.s = [m];

30 K.scomplex=1; %Complex Hermitian PSD

31 p - y(2:m) complex, y(1) and y(mt+l) real ----------

32 K.ycomplex = 2:m;

We have modeled the objective function by means of an artificial variable, y,+1, and y2, 11
is bounded from below by the original quadratic objective function, using a 1 + m(m + 1)/2-
dimensional quadratic cone. The Toeplitz matrix is modeled as

m—1

nl+2) yinT;, (16)

=1

where T; is all-1 along the k-th upper diagonal, and zero everywhere else. Recall from problem
(13) in Section 3.2, that in the real case, SeDuMi restricts the symmetric part of mat(c— ATy) to
be positive semidefinite. In the complex case, SeDuMi restricts the Hermitian part, i.e. mat(c —
ATy) +mat(c — ATy)’, to be positive semidefinite. Letting Z denote the Hermitian part of (16),

we have
m—1

Z=yl+ > WinTi+7nT),
i=1

where 7;,; denotes the complex conjugate of y;; ;. Thus, we have indeed modeled Z as a
Hermitian Toeplitz matrix, and SeDuMi further restricts it to be positive semidefinite, because
of the field K.s. Furthermore, we tell SeDuMi to allow complex values for ys,¥s,...,%m, Dy
setting K.ycomplex = 2:m. Remark that unlike K.1,K.q, K.r and K. s, the field K.ycomplex is
not involved in the definition of the symmetric cone K in (7)—(8).

The following lines show how to solve problem (15), for a particular 3 x 3 Hermitian matrix
P, which is neither Toeplitz, nor positive semidefinite.

>> i = sqrt(-1);
>> P = [4, 1+2%i, 3-i; 1-2#%i, 3.5, 0.8+2.3%i; 3+i, 0.8-2.3*i, 4]
P =

4.0000 1.0000 + 2.0000i 3.0000 - 1.0000i

1.0000 - 2.0000i 3.5000 0.8000 + 2.30001

19

3.0000 + 1.0000i 0.8000 - 2.3000i 4.0000

>> [At,b,c,K] = toepest(P);
>> [x,y,info] = sedumi(At,b,c,K);
>> z = c-At*y; Z = mat(z(K.qg+1l:length(z))); Z = (Z+Z’)/2

4.2827 0.8079 + 1.7342i 2.5574 - 0.7938i
0.8079 - 1.73421i 4.2827 0.8079 + 1.7342i
2.5574 + 0.79381 0.8079 - 1.7342i 4.2827

>> eigK(z,K)’
ans =

-0.0000 2.0517 0.0000 7.2810 5.5670
Instead of using the mat () function, one may use the cel1K () function as follows:
>> z = cellK(c-At*y,K); Z=z.s{1}; Z=(Z+Z’)/2

We have found the optimal positive semidefinite Toeplitz matrix Z, which has eigenvalues 0,
7.281 and 5.567. Checking the objective values reveals a new phenomenon:

>> [c?*x; b?*y]
ans =

-1.4508 - 0.2428i
-1.4508

The value of ct'z, where ! means complex conjugate transpose, may no longer be real, and the
same is true for by in general. Obviously, we cannot minimize or maximize complex valued
functions. Instead, SeDuMi minimizes Re ¢tz in the primal, and maximizes Re by in the dual.
Here, Re stands for real part. In the sequel, we will also use the notation Im , to denote the
imaginary part.

If we make K.ycomplex = [], then all dual multipliers y; are restricted to be real.

>> K.ycomplex = [];
>> [x2,y2,info2]=sedumi(At,b,c,K);
>> [c’*x2; b’*y2]

20

ans =

-4.5592 - 0.38161
-4.5592

Clearly, by restricting y to be real, the dual optimal value Re by = —y,,11 gets worse. Ap-
parently, something has changed in the primal problem as well, since the primal optimal value
has improved from —1.4508 to —4.5592. The difference is in the ‘Az = b’ restriction, as the
following lines show:

>> [b-At’*x b-At’*x2]

ans =
0.0000 -0.0000
0.0000 + 0.0000i -0.0000 + 1.8863i
-0.0000 -0.0000 - 0.4387i1

0 0

The restriction ‘Ax = b’ is interpreted by SeDulMi as
ailz = b; if i € K.ycomplex (17)
Re aZHm = b; otherwise.

By making K.ycomplex = [], we therefore removed the restrictions on Im Az, and implicitly
added the restriction that Im y = 0. Complex y-variables in the dual form correspond with
complex equality constraints in the primal form.

If size(A,2) = length(b), then the primal feasibility requirements are A’*x = b, using
the complex conjugate transpose A™.

The field K. scomplex contains a list of the PSD matrix variables, of order K.s (K.scomplex),
which are restricted to be Hermitian positive semidefinite matrices. For the remaining matrix
variables, the primal z-variables are restricted to be real symmetric positive semidefinite, whereas
the dual slack variables are restricted to be positive semi-definite on the real part only (the dual
imaginary part is then unrestricted).

The field K.xcomplex lists the primal z-variables that are allowed to have a nonzero imagi-
nary part. For the free and nonnegative z-components, ths imaginary part is then unrestricted
in sign. For example, the restriction ‘x; > 0’ is interpreted by SeDuMi as

(18)

z; € Ry if i € K.xcomplex
Re z; > 0 if ¢ € K.xcomplex.

21

A similar convention holds for the first entry in a g-second order cone. The remaining entries
in a second order cone that are listed in K.xcomplex are simply complex variables that appear
in the norm-bound restriction. Only entries in the £,1,q,r-cones can be listed in K.xcomplex;
the matrix variables are handled by the field K. scomplex.

On the dual side, K .xcomplex lists the equality and nonnegativity constraints for which the
restriction Im ¢; — a?y = 0 must be imposed on the imaginary part. This interpretation also
works for the first entry in a second order g-cone. The remaining entries in a second order
cone that are listed in K.xcomplex are simply complex variables that appear in the norm-bound
restriction (this is completely symmetric to the primal).

For sensitivity analysis, it is interesting to note that Re (Ac)"z is a supergradient for the
optimal value function, under perturbations of the form c + tAc, whereas Re (Ab)Hy is a sub-
gradient of the optimal value function under perturbation of b. For a discussion of sensitivity
analysis in (real symmetric) semidefinite programming, see Goldfarb and Scheinberg [12].

5 optional settings

By default, SeDuMi fills your terminal screen with some output concerning its iterative progress.
This can be an annoying feature, in particular if SeDuMi is merely used as a subroutine within
a larger program. To suppress the on-screen output of SeDuMi, it suffices to set an optional
parameter, pars.fid, to zero.

>> load trussi
>> pars.fid = 0;
>> [x,y,info] = sedumi(At,b,c,K,pars);

The structure pars is not only used for suppressing iterative output of SeDuMi. It can contain
a number of optional fields, which we will discuss in this section.

The abbreviation ‘fid’ in pars.fid stands for ‘file identifier’: the output of SeDuMi will be
sent to the file whose file identifier is pars.fid. The file identifier for the null-device is 0, which
is useful for suppressing output, and for the terminal screen it is 1. Output can also be redirected
to a file, e.g.

>> pars.fid = fopen(’trussl.out’,’w’);
>> [x,y,infol=sedumi(At,b,c,K,pars);
>> fclose(pars.fid); pars.fid = 1;

With the above lines, the output is redirected to the file ‘trussl.out’, as can be checked with the
command dbtype trussl.out.

SeDuMi uses a variant of the primal-dual interior point method, which is known as the
centering—predictor—corrector method [25]. There are 3 variants of the centering—predictor—
corrector method implemented, which can be selected with the field pars.alg. With pars.alg

22

Wide region v-plot
T

8 g

000

oa@ofa oo
000D

[e]

normalized v-values
oo PO O @
[elo¥e} ©
- @O0O O | @®OO
o om) @
o@D
[e] o @ O

O |000

o
o
IS

6 8 10 12
iterations

Reduction rates

04 g
0.2f \A/
0 L L L L L Il L

0 1 2 3 4 5 6 7 8 9 10 11
iterations

reduction rate

Figure 1: Plot produced by setting pars.vplot = 1.

= 0, you select a longest-step algorithm, without any second order corrector. To enhance the
algorithm with a second order corrector, you can either set pars.alg = 1 or pars.alg = 2.
With pars.alg = 1, the second order corrector is derived by linearization of the so-called v-
values, whereas pars.alg = 2 uses linearization of the squared v-values, which is also known as
xz-linearization. For linear programming, xz-linearization results in the well-known Mehrotra’s
corrector [17]. In all three variants, the centering step is determined by the central region pa-
rameter, pars.theta. This parameter can take any value in (0, 1]. At one extreme, pars.theta
= 1 results in path—following, which typically involves relatively short step lengths. Setting
pars.theta to a smaller value, such as 1/4, makes the algorithm work in the neighborhood of
a full dimensional central region, and this typically allows for larger step lengths, see Sturm
and Zhang [26]. The size of the neighborhood is controled by the parameter pars.beta, which
can be assigned any value in (0,1). In the output of SeDuMi on the terminal screen, there is
a column labeled ‘delta’, which lists the actual distance to the central region in each iteration.
The step length will always be such that this is at most pars.beta. The ratio of the actual step
length and the maximal steplength to the boundary of the cone K is listed in the column labeled
‘t/maxt’. For some iterations, an asterisk (‘*’) appears in front of the output line. At these it-
erations, the residual vector of the self-dual model has been recomputed (to avoid accumulation
of numerical errors).

For research purposes, SeDuMi can produce a plot of the iterative v—values. This feature is
activated by setting pars.vplot = 1. For problem truss1, this results in the plots of Figure 1.
For each iteration, the first plot shows all the v—values, divided by the mean of the v-vector
in that iteration. It also gives a horizontal line at value 1, representing the central path, and
a horizontal line at the central region threshold, pars.theta = 1/4. Any v-values below this

23

threshold will be corrected by the centering component in the succeeding iteration. The second
plot shows the rate of linear reduction, which is simply

duality gap in iteration k

duality gap in iteration k — 1"

The rate of linear reduction is also listed in the column ‘rate’ in the on-screen output of SeDuMi,
and the iterative duality gap is listed under ‘gap’. This is the duality gap in an artificial self-dual
model, in which your original model is embedded by SeDuMi, using the technique of Ye, Todd
and Mizuno [31]. The self-dual model gives rise to a feasibility indicator, listed in the column
‘feas’. Ideally, the indicator converges to +1 for feasible problems, and to —1 for (primal and/or
dual) infeasible problems.

Termination control is provided by the fields maxiter, and eps in the pars structure. SeDuMi
will terminate successfully if it finds a solution that violates feasibility and optimality require-
ments by no more than pars.eps. The parameter pars.maxiter allows you to set a maximum
on the number of iterations. By default, pars.eps = 1E-9 and pars.maxiter = 150. A pos-
sible experiment with these parameters is to set pars.eps = 0 in the example of minimizing
1/z1, which was discussed in Section 3.1.

Acknowledgments. I thank T. Terlaky for encouraging me to write this manual, and for pointing
out a bug in the first public release of SeDuMi. P. Apkarian, M. Bengtsson, T.N. Davidson, F. Glineur,
V. Prodanovic and A. Ross helped to improve the software, by providing bug reports and suggestions on
the first release of the software. Numerous other users have contributed in the same manner since.Two
anonymous referees have contributed in improving this document.

References

[1] F. Alizadeh, J.A. Haeberly, M.V. Nayakkankuppann, M. Overton, and S. Schmieta. SDP-
Pack user’s guide. New York University, New York, USA, 1997.

[2] B. Borchers. CSDP, a C library for semidefinite programming. Technical report, New
Mexico Tech Mathematics Faculty, USA, 1997.

[3] N. Brixius and F.A. Potra. Sdpha: A MATLAB implementation of homogeneous interior-
point algorithms for semidefinite programming. Technical report, Department of Computer
Science, University of Iowa, lowa City, lowa, USA, 1998.

[4] T.N. Davidson, Z.-Q. Luo, and J.F. Sturm. A (primal form of the) positive real lemma for
FIR systems. Technical report, Communications Research Laboratory, McMaster Univer-
sity, Hamilton, Canada, 1998. To appear.

24

[5]

[6]

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Deng and H. Hu. Computable error bounds for semidefinite programming. Technical
report, Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois,
USA, 1996.

S. Dussy and L. El Ghaoui. Multiobjective robust control toolbox for LMI-based control.
Technical report, Laboratoire de Mathématiques Appliquées, ENSTA, Paris, France, 1997.

L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain
data. SIAM Journal on Matriz Analysis and Applications, 18(4):1035-1064, 1997.

L. El Ghaoui, R. Nikoukhah, and F. Delebecque. LMITOOL: A front-end for LMI opti-
mization, user’s guide. Laboratoire de Mathématiques Appliquées, ENSTA, Paris, France,
1995.

J. Faraut and A. Kordnyi. Analysis on Symmetric Cones. Oxford Mathematical Mono-
graphs. Oxford University Press, New York, 1994.

K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-point
methods for semidefinite programming. Mathematical Programming, 79:235-253, 1997.

K. Fujisawa, M. Kojima, and K. Nakata. SDPA (semidefinite programming algorithm)
user’s manual — version 4.10. Technical report, Dept. of Information Sciences, Tokyo
Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1998.

D. Goldfarb and K. Scheinberg. On parametric semidefinite programming. Technical report,
Columbia, University, Department of IEOR, New York, USA, 1997.

D. Goldfarb and K. Scheinberg. Stability and efficiency of matrix factorizations in interior
point methods. Conference presentation, HPOPT IV Workshop, June 16-18, Rotterdam,
The Netherlands.

M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second—order cone
programming. Technical report, Information Systems Lab, Stanford University, 1997. To
appear in Linear Algebra and Applications.

7Z.-Q. Luo, J.F. Sturm, and S. Zhang. Duality and self-duality for conic convex program-
ming. Technical Report 9620/A, Econometric Institute, Erasmus University Rotterdam,
Rotterdam, The Netherlands, 1996.

7.-Q. Luo, J.F. Sturm, and S. Zhang. Duality results for conic convex programming. Tech-
nical Report 9719/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam,
The Netherlands, 1997.

S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal
on Optimization, 2:575-601, 1992.

25

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Mehrotra and Y. Ye. Finding an interior point in the optimal face of linear programs.
Mathematical Programming, 62:497-515, 1993.

H.D. Mittelmann. Several ~SDP-codes on problems from SDPLIB.
ftp://plato.la.asu.edu/pub/sdplib.txt, 1998.

R.D.C. Monteiro and S. Mehrotra. A general parametric analysis approach and its implica-
tion to sensitivity analysis in interior point methods. Mathematical Programming, 72:65-82,
1996.

Y. Nesterov and M.J. Todd. Self-scaled barriers and interior—point methods for convex
programming. Mathematics of Operations Research, 22(1):1-42, 1997.

D. Peaucelle, D. Henrion and Y. Labit. User’s guide for SeDuMi Interface 1.01: Solv-
ing LMI problems with SeDuMi. LAAS - CNRS, Toulouse, France. Available from
http://www.laas.fr/ peaucell/SeDuMiInt.html.

C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and algorithms for linear optimization. An
interior point approach. Series in discrete mathematics and optimization. John Wiley &
Sons, New York, 1997.

A.M. Ross. Optimization over cones: SDPpack versus SeDuMi. Technical Report 1998-10-
22, Department IEOR, University of California at Berkeley, 1998.

J.F. Sturm. Primal-Dual Interior Point Approach to Semidefinite Programming, volume
156 of Tinbergen Institute Research Series. Thesis Publishers, Amsterdam, The Nether-
lands, 1997.

J.F. Sturm and S. Zhang. On a wide region of centers and primal-dual interior point
algorithms for linear programming. Mathematics of Operations Research, 22(2):408-431,
1997.

M.J. Todd and Y. Ye. Approximate Farkas lemmas and stopping rules for iterative
infeasible—point algorithms for linear programming. Mathematical Programming, 81:1-21,
1998.

K.C. Toh, M.J. Todd, and R.H. Titiincii. SDPT3 - a MATLAB package for semidefinite
programming. Technical report, School of Operations Research and Industrial Engineering,
Cornell University, Ithaca, NY, USA, 1996.

L. Vandenberghe and S. Boyd. SP: Software for semidefinite programming. Information
Systems Laboratory, Electrical Engineering Department, Stanford University, Stanford,
USA, 1994.

26

[30] S. Wu, Z.-Q. Luo, and K. Wong. Direction finding for coherent sources via Toeplitz approx-
imation. Technical report, Communications Research Laboratory, McMaster University,
Hamilton, Ontario, Canada, 1997.

[31] Y. Ye, M.J. Todd, and S. Mizuno. An O(y/nL)-iteration homogeneous and self-dual linear
programming algorithm. Mathematics of Operations Research, 19:53-67, 1994.

[32] Y. Zhang. Solving large—scale linear programs by interior—point methods under the MAT-
LAB environment. Technical report, Department of Computational and Applied Mathe-
matics, Rice University, Houstan, Texas, USA, 1997.

A Calling Sequence
The primal canonical form for solving optimization problems with SeDuMi is
min{c'z | Az = b, z € K},
and the dual canonical form is
max{b'y | c — ATy € K}.
The general calling sequence for solving the above primal-dual pair is
[x,y,info] = sedumi(A,b,c,K,pars)

Here, K is a MATLAB structure to define the symmetric cone X; it consists of the following
(optional) fields:

K.f The number of free primal variables, i.e. the number of dual equality constraints
K.1 The number of nonnegativity constraints

K.q A list of dimensions of quadratic cone constraints

K.r A list of dimensions of rotated quadratic cone constraints

K.xcomplex A list of primal variables in the f,1,q,r blocks that are allowed to have a nonzero
imaginary part. The imaginary parts of the associated dual constraints are then explicitly
restricted.

K.s A list of orders of positive semidefiniteness constraints

K.scomplex A list of matrix variables that are restricted to be Hermitian positive semidefinite.

27

K.ycomplex This field is not related to K. It lists the components of the y-variables that are
complex valued. Equivalently, it lists the primal equality constraints (Az); = b; that have
to be satisfied not only in their real parts, but also in their imaginary parts.

The structure K defines K to be
K =R x RE x (Qeone x - - x Qcone) x (Reone X - -+ x Reone) x (Scone x --- x Scone),

In total, the number of Qcone (Rcone, Scone) components is length(K.q) (length(X.r),
length(K.s)). The ith Qcone is

Qcone; = {(z1,72) € R x CXLI1 | 7y > ||z},

where C™ denotes the space of complex n—tuples. The jth Rcone is
: 1
Rcone; = {(:vl,xg,:vg) €R xR x 02|z 20 > §||x3||2, 1+ 22 > O} ,

and the kth Scone is
Scone, = {w € crsi? | mat(x) is Hermitian positive semideﬁnite})

for primal components. For dual components z = ¢ — ATy, we use a slightly milder definition of
Scone, viz.

Sconey, = {z € cXslP’ | mat(z) + mat(z)’ is positive semideﬁnite} .
If k£ is not listed in K.scomplex, then the definition in the dual is even milder, namely,
Sconey, = {z € C**[¥" | Remat(z) + mat(z)' is positive semideﬁnite} .
The length of the vector ¢ should be

length(c) = K.f + K.1 + sum(K.q) + sum(K.r) + sum(K.s."2)

If the data (A4,b,c) is real valued, then z and y will also be real valued.
The parameter pars is a MATLAB structure, consisting of the following (optional) fields:

pars.fid By default, pars.fid=1, which tells SeDuMi to produce iterative statistics on the
screen. If pars.fid=0, then SeDuMi runs quietly, i.e. no screen output. In general, output
is written to the file or device that is identified by the file handle pars.fid. A file handle
is assigned to a file by the MATLAB function fopen, as in

pars.fid = fopen(’trussl.out’,’w’).

28

pars.alg By default, pars.alg=2. If pars.alg=0, then a first-order algorithm is used, which
is not recommendable. If pars.alg=1, then SeDuMi uses the centering-predictor-corrector
algorithm with v-linearization. If pars.alg=2 then zz-linearization is used in the corrector,
similar to Mehrotra’s algorithm. All 3 algorithms are special instances of the generic wide-
region algorithm, as discussed in Chapter 7 of Sturm [25].

pars.theta, pars.beta By default, pars.theta=0.25 and pars.beta=0.5. These are the
wide region and neighborhood parameters. Valid choices are 0 < § <=1 and 0 < 8 < 1.

pars.stepdif, pars.w By default, pars.stepdif=1 and pars.w = [1 1]. This means that
primal/dual step length differentiation is enabled (disabled if pars.stepdif=0). The pri-
orities of the relative primal, dual and gap residuals are weighted as w(1) :w(2) :1, in order
to find the optimal step differentiation.

pars.vplot If this field is 1, then SeDuMi produces a fancy v-plot, for research purposes.
Default: vplot = 0.

pars.eps The desired accuracy.
pars.bigeps The required accuracy to get info.numerr < 2.
pars.maxiter Maximum number of iterations, before termination.

pars.denq Proportion of x(i)’s for which the sparsity in A(:,i) is considered normal. Default:
0.75.

pars.denf A column is treated as dense if it has pars.denf times more nonzeros than normal.
Default: 10.

pars.stopat Enters MATLAB debugging mode at the beginning of iteration pars.stopat.
Default: -1.

pars.cg Various parameters for controling the Preconditioned conjugate gradient method
(CG), which is only used if results from Cholesky are inaccurate. Type ‘help sedumi’
for details.

pars.chol Various parameters for controling the Cholesky solve. Type ‘help sedumi’ for details.
The output parameter info is a MATLAB structure, with the following fields:

info.pinf and info.dinf The feasibility status of the primal-dual problem pair, as detected
by SeDuMi. There are three cases:

1. pinf = dinf = 0 Then z and y are (approximate) optimal solutions, i.e. Az = b,
z €K, c— ATy e K, and 'z < b'y (approximately).

29

2. pinf = 1 Primal is infeasible, i.e. {z € K | Az = b} = 0. Then y is a Farkas-type
solution, i.e. b1y > 0 and —A'y € K.

3. dinf = 1 Dual is infeasible, i.e. {y | c — ATy € K} = 0}. Then z is a Farkas-type
solution, i.e. ¢’z < 0, Az =0 and z € K.

info.numerr A positive value of info.numerr means that SeDuMi terminated without achiev-
ing the desired accuracy, because of numerical problems. If info.numerr = 1 then the
results are merely inaccurate: the solution has still achieved the accuracy denoted by
pars.bigeps, which is 1E-3 by default. If info.numerr = 2 then SeDuMi failed com-
pletely.

30

